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The effective field in cubic lattices is calculated for a simple model in which the electrons have spatially ex
tended charge distributions. For simple cubic, body-centered cubic, and face-centered cubic lattices in which 
the electrons in each primitive cell are infinitesimally displaced from rigid cores, the effective field can be 
written Eeff=E-f-(47r/3)7P, where E is the average electric field in the medium, and P is the polarization. 
The coefficient y varies from zero for very extended electronic charge distributions to 1 for the limit of 
point charges. Values of y for Gaussian distributions of intermediate width are given. Effective fields are also 
calculated for the rocksalt, zincblende, and cesium chloride structures. These results involve an additional 
coefficient y ' which also varies between 0 and 1. For moderate overlaps between electronic charge distribu
tions of next-nearest neighbors the effective fields differ appreciably from the Lorentz field E + (47r/3)P. 

I. INTRODUCTION 

TH E effective electric field1,2 which acts on the 
atoms or ions or electrons in a crystal is of con

siderable importance in calculations of the optical 
properties of solids. We present here a simple classical 
calculation which shows how the magnitude of the 
effective field in several cubic lattices depends on the 
spatial extent of the electronic charge distribution on 
the atoms or ions. 

We first consider cubic lattices with only one atom in 
the primitive cell, namely, the simple cubic (sc), body-
centered cubic (bcc), and face-centered cubic (fee) 
lattices, and assume that in each primitive cell the elec
trons are displaced a distance — d with respect to the 
positive cores. If the core itself is rigid and unpolarized, 
the total polarization of the lattice is 

1?=Nq&, (1) 

where q is the magnitude of the charge of the electrons 
and of the cores in each cell, and N is the number of 
primitive cells per unit volume. For this simple model, 
the effective field can be written 

Eeff=E+(4ir/3)7P, (2) 

where E is the macroscopic average electric field in the 
medium, and y is an effective field constant whose 
value we shall calculate. 

The two simple limiting cases of Eq. (2) are 7 = 0 and 
7 = 1 . The first of these, for which the effective field is 
just the macroscopic field in the medium, leads to the 
Drude-Sellmeier formula 

n2— l = ^7rNa (3) 

* National Science Foundation Predoctoral Fellow. 
1 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic 

Crystals (Oxford University Press, London, 1948), 2nd ed., 
Chap. I. 

2 W. K. H. Panofsky and M. Phillips, Classical Electricity and 
Magnetism (Addison-Wesley Publishing Company, Inc., Cam
bridge, Massachusetts, 1955), p. 31. 

for the relation between the index of refraction n and 
the atomic polarizability a. The case 7 = 1 , which leads 
to the Lorentz field Eeff = E + (47r/3)P, gives theLorentz-
Lorenz relation 

(n2-l)/(n2+2) = (4:T/3)NCX. (4) 

The most detailed investigation of effective fields is 
that of Darwin,3 who showed that for free electrons in 
metals one has 7 = 0 , while for self-contained atoms or 
ions one expects 7 = 1. Darwin's criteria suggest that one 
also has 7 ^ 0 for the electrons in the ionosphere.4 Quali
tatively one can understand the difference between the 
two cases by noting that a free electron has a uniform 
charge distribution, and therefore almost by definition 
feels the average field E in the medium. On the other 
hand, a point charge feels only the local field, which will, 
in general, be different from the average field. 

Mott and Gurney1 long ago suggested that overlap
ping electronic charge distributions will lead to values 
of 7 less than 1, but most calculations in nonmetallic 
solids use the Lorentz effective field. Many properties 
of solids, such as the lattice vibrations of ionic crystals5 

and the oscillator strengths of defects in ionic crystals,6 

depend for their quantitative interpretation on the 
magnitude of the effective field. 

In this paper we give the results of a classical calcu
lation of the effective field in cubic lattices based on the 
simplest possible model in which the spatial extent of 
the electron distribution can be readily considered. In 
the following section the effective field is calculated in 
some detail for the simple cubic, body-centered cubic, 
and face-centered cubic lattices; the resulting values of 

3 C . G. Darwin, Proc. Roy. Soc. (London) A146, 17 (1934): 
A182, 152 (1943). 

4 J. A. Ratcliffe, The Magneto-Ionic Theory and its Application 
to the Ionosphere (Cambridge University Press, Cambridge, 
England, 1959), p. 154. 

6 M. Born and K. Huang, The Dynamical Theory of Crystal 
Lattices (Oxford University Press, London, 1954), Sec. 9. 

6 W. T. Doyle, Phys. Rev. I l l , 1072 (1958). 
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the effective field constant 7 are presented in Sec. III. 
In Sec. IV we extend the model to cubic lattices with 
two atoms in the primitive cell, since most applications 
will be diatomic rather than to monatomic crystals. 

II. CALCULATION FOR MONATOMIC LATTICES 

We shall assume that the atoms of the simple cubic, 
body-centered cubic, and face-centered cubic lattices 
which we consider contain some relatively loosely 
bound electrons, and some tightly bound electrons. The 
tightly bound electrons in real solids will contribute 
to the polarization and to the effective field, but for 
the sake of simplicity we ignore them here. We assume 
the loosely bound electrons to have a charge distribu
tion -~qpe(r), where fpe(t)dx=\. In the numerical 
calculations we use a Gaussian charge distribution. 

When an external electric field is applied, our model 
lattice will be polarized by a relative displacement d 
between the cores and the electrons. We shall assume 
that this displacement is the same in every lattice cell; 
thus the polarization is given by Eq. (1). Our results 
apply only to lattice vibrations or electric fields of long 
wavelength. 

The field acting on one of the atoms of the lattice is 
the external field plus the field of the other atoms. The 
field due to the atom itself is not included, since it is 
taken into account by the atomic polarizability a. 
When the electrons have an extended charge distribu
tion one must use some care in defining the effective 
field. We identify the effective field with the field that 
tends to separate the positive and negative charges in 
the atom. Thus the effective field is the field at the posi
tion of the core, or the integrated field acting on the 
electron distribution. We shall show formally below that 
these two are equal, as one would expect from the re
quirement that the total force on the charges in a 
primitive cell vanish. 

The local field in the crystal can be written as the sum 
of four terms2,5: 

Eioc= Esph+ Ein+ Eout+ Eext, (5a) 

where Esph is the field of the charges within an in
scribed sphere, Ein and Eout are the fields arising from 
the charges on the inner and outer surfaces of the 
remainder of the sample, which is treated as a contin
uum with polarization P, and Eext is the external field. 
The charges on the inner surface give E in= (47r/3)P, 
and for samples of simple shapes the outer surface 
charges give a uniform field Eout= — LF, where L is the 
depolarization factor,7 which is 47r/3 for a spherical 
sample and 4T for a thin slab perpendicular to the ex
ternal field. But the macroscopic field in the sample is 

E=E o u t+E e x t=E e x t -LP, (5b) 

7 C. Kittel, Introduction to Solid State Physics (John Wiley & 
Sons, Inc., New York, 1956), 2nd ed., p. 159. 

so that we can write 

EIOC=E+(47r/3)P+Esph, (5c) 

which no longer depends on sample shape. 
All that remains is the evaluation of Esph, the con

tribution of the atoms and ions in the inner sphere. If 
the lattice is composed of point dipoles and the center 
of the sphere is a point of cubic symmetry, then Esph 

vanishes there5 and (5c) reduces to the Lorentz ef
fective field. For our more general model, we want an 
expression for the field at any point in the primitive 
cell, since we must show that the average field acting 
on the electrons is the same as the field at the position 
of the cores. We sum first over all lattice points (or 
reciprocal lattice points) on a spherical shell, and then 
over shells, thus preserving the spherical summation 
required by (5c),8 but we let the radius of the inner 
sphere become infinite. Our method of summation closely 
resembles the Ewald method for evaluating lattice 
sums.9 

In a crystal the charge density p(r) and the electric 
field E(r) have the lattice periodicity, and may be 
expanded in a Fourier series: 

P (r) = £ i pi exp (iki • r) , (6a) 

E(r) = EiEiexp(4 1 . r ) . (6b) 

The summation is over the reciprocal lattice vectors ki, 
which have rectangular components 2icli/a, 2irl2/a, and 
2wk/a, respectively, where the k are integers and a is 
the lattice constant. For a simple cubic lattice the U 
take on all integral values. For a body-centered cubic 
space lattice the reciprocal lattice is face-centered, and 
/1+/2+/3 must be even. For a face-centered cubic space 
lattice, the U must be either all even or all odd. 

If we neglect the magnetic fields associated with the 
lattice displacements,10 Maxwell's equations V«E=4xp 
and VXE=01ead to 

Ei=-47ri(kiA2)Pl . (6c) 

The charge density in our model can be written 

P « = g l « ( r - K , - ) - f ! p . ( r - R , + d ) , (7) 

where the Dirac delta functions of the cores are located 
at the lattice points Ri} and the electronic charge dis
tributions are displaced by — d. The integration over 
the volume of the crystal required to obtain the coef
ficients in (6a) can be transformed to an integration over 
all space involving only the charge of the atoms or 
ions in one primitive cell.9 We find 

Pi= feA)[l-*(ki) exp (* rd ) ] - ^G(k 1 , d ) , (8a) 

8 The shape dependence of dipole sums is discussed by B. R. A. 
Nijboer and F. W. DeWette, Physica 14, 422 (1958). 

9 See Appendix A of Ref. 7. 
10 See Sec. 8 of Ref. 5. 
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where v=N~x is the volume of the primitive cell, and find that the effective field is 
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cr(k)= (2TT)-3 / p.(r) exp(-ik-t)dr (8b) 

is the Fourier transform of the electronic charge distri
bution. From (6b) and (6c) we find 

E(r)= E~4wiNq E i W W C M ) exp(Arr), (9) 

where the prime on the summation indicates that the 
term with ki=0 has been omitted. This term is just E, 
the average electric field in the medium, and is written 
in explicitly. 

The field acting on the atom at the origin due to the 
external field and all the other atoms in the crystal is 
obtained by subtracting from (9) the field due to the 
atom's own charge. We find 

P.eif(r)= (2w)-*q /*G(k,d) exp(&.r)<ft, (10a) 

Eseif(r)= - (2^)'Hq f (k/k2)G(k,&) exp(ik.r)Jk, (10b) 

where the integration is over all values of k. We subtract 
(10b) from (9) and find the local field due to all atoms 
except the one in the central cell to be 

Eioo(r) = E + (2«*)-Hq / * [1 -8TTW E I ' *(k-ki)] 

X(k/^2)G(k,d)exp(A.r)ik. (11) 

We can now verify that the local field acting on the 
core at the origin is equal to the average field acting on 
the electrons from that atom. These two fields are given, 
respectively, by 

Eloc(0) = E + - (2wTHq f [ 1 - 8 T T W L I ' 8(k-ki)] 

X (k/k2)a(k) exp(ik. d)dk, (12a) 

/ 
Eioc(r)pe(r+d)Jr 

= E+(2*a)-1*g / [ l - f c r W i y 5 (k -k0 ] 

X(k/&2)o-(-k) exp[(-ik.d)]^k, (12b) 

where certain terms which vanish because of the odd 
parity of the integral have been omitted. If we substi
tute —k for k in (12b), it becomes identical to (12a), 
and the two effective fields are equal. 

Since we are interested only in effects linear in the 
polarization, we retain only the terms linear in d, and 

Eeff=E+(27r2)-1i; fk(k.Y)k-2a(k)dk 

-47rEi , ki(krP)^rV(k 1 ) , (13a) 

where Eq. (1) was used to eliminate d. If we restrict 
ourselves to spherically symmetric pe(t) and o-(k), the 
cubic symmetry of the cases we consider allows us to 
replace ki(kpP)&r2 by | P in the summation, and a 
similar simplification occurs in the integral in (13). 
Thus the effective field is 

Eeff = E + (4ir/3)P[W0)-EiV(ki)] (13b) 

and the effective field coefficient y of Eq. (2) is 

7=^Pe(0)-Ei ,o-(k1). (13c) 

We can convert (13c) to a summation in the direct 
lattice if we replace o-(ki) by its definition in (8b) and 
interchange the order of integration and summation. 
We find 

7 = l - ^ E , P e ( R . ) . (14) 

To proceed with the explicit evaluation of y we now 
assume that the electronic charge distribution is a 
Gaussian. 

p,(r) = (w/ir)8/2- exp(- wr2). (15) 

If we introduce the dimensionless constant B—wa2, 
Eq. (13c) gives 

7= (B/w)^(v/a")~j:i exp(-7r2f/£), (16) 

where l2=h2+h2+h2, and the U take on the values al
ready discussed for the three cubic lattices. The primi
tive cell volume v equals a3, ^a3, and \az for the simple 
cubic, body-centered cubic, and face-centered cubic 
lattices, respectively. 

The reciprocal lattice sums in (16) are conveniently 
expressed in terms of the sums 

S+(B)= £ exp(-7r2m2/£), (17a) 

S-(B)= Z (~l)Mexp(-7r2m2/^) 
m==—oo 

= 2S + (5 /4) -S + (5) . (17b) 

The convergence of these sums is very rapid when B 
is small, but becomes slow for large B. Then we can use 
the theta function transformation11 

E exp[ - (WTT- z)2/B~\ = (£/V)1/2 

m=—oo 

X ]£ exp(-Bm2+2imz). (18) 

11 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, Cambridge, England. 
1927), 4th ed., p. 476. 
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TABLE I. Effective field constants and fractional charges for cubic lattices. The effective field constants y and yr are given in Eqs. (20) 
and (29), respectively, and / i s the fraction of the electronic charge on one atom which is contained within the atomic polyhedron cen
tered at that atom. B is the width parameter wa2 for the electron distribution, where w is given in Eq. (15) and a is the lattice constant. 

B 

025 
0.5 
0.75 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
5 
6 
7 
8 
9 
10 
12 
14 
16 
20 
25 
30 
35 
40 
50 

Simp] 
/ 

0.0211 
0.0561 
0.0972 
0.1410 
0.2309 
0.3182 
0.3994 
0.4733 
0.5396 
0.5984 
0.6959 
0.7704 
0.8270 
0.8696 
0.9017 
0.9259 
0.9577 
0.9757 
0.9860 
0.9953 
0.9988 
0.9997 
0.9999 
1.0000 
1.0000 

le cubic 
7 

0.002448 
0.063494 
0.116634 
0.179277 
0.321570 
0.464174 
0.589576 
0.692524 
0.773809 
0.836261 
0.917728 
0.960551 
0.981769 
0.991816 
0.996409 
0.998453 
0.999725 
0.999954 
0.999992 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 

Body-centered cubic 
/ 

0.0108 
0.0295 
0.0522 
0.0776 
0.1327 
0.1905 
0.2485 
0.3052 
0.3598 
0.4117 
0.5064 
0.5886 
0.6588 
0.7181 
0.7678 
0.8091 
0.8717 
0.9141 
0.9427 
0.9746 
0.9908 
0.9967 
0.9988 
0.9996 
0.9999 

7 

0.011224 
0.031747 
0.058323 
0.089794 
0.164938 
0.253354 
0.350471 
0.449911 
0.545238 
0.631727 
0.769959 
0.862990 
0.921072 
0.955617 
0.975495 
0.986663 
0.996177 
0.998941 
0.999714 
0.999980 
0.999999 
1.000000 
1.000000 
1.000000 
1.000000 

Face-centered cubic 
/ 

0.0055 
0.0151 
0.0272 
0.0409 
0.0718 
0.1057 
0.1412 
0.1776 
0.2142 
0.2506 
0.3216 
0.3889 
0.4517 
0.5096 
0.5625 
0.6106 
0.6930 
0.7593 
0.8121 
0.8864 
0.9401 
0.9686 
0.9836 
0.9915 
0.9977 

7 

0.005612 
0.015873 
0.029161 
0.044897 
0.082481 
0.126984 
0.177412 
0.232865 
0.292209 
0.353985 
0.478282 
0.593957 
0.693583 
0.774522 
0.837465 
0.884808 
0.944417 
0.974253 
0.988431 
0.997812 
0.999749 
0.999973 
0.999997 
1.000000 
1.000000 

Rocksalt 
y' 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000003 
0.000057 
0.000402 
0.001619 
0.004569 
0.019208 
0.049183 
0.094969 
0.153826 
0.221669 
0.294345 
0.440631 
0.573365 
0.684090 
0.837645 
0.934996 
0.975519 
0.991161 
0.996907 
0.999645 

Zincblende 

y 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000001 
0.000012 
0.000076 
0.000310 
0.002232 
0.008306 
0.021171 
0.042534 
0.072823 
0.111366 
0.207298 
0.316668 
0.427192 
0.622189 
0.793255 
0.893573 
0.947481 
0.974872 
0.994615 

Cesium chloride 

y 
0.000000 
0.000000 
0.000012 
0.000310 
0.008306 
0.042534 
0.111366 
0.207298 
0.316668 
0.427192 
0.622189 
0.765429 
0.860374 
0.919419 
0.954581 
0.974872 
0.992630 
0.997928 
0.999435 
0.999961 
0.999999 
1.000000 
•1.000000 
1.000000 
1.000000 

If z = 0 this gives 

5 + ( B ) = ( S / x ) 1 ' » 5 + ( ^ / B ) . (19) 

Thus even for the worst case (B=ir) no more than three 
terms in m2 need to be used to give a relative error of 
exp(—9w) or less. Use of Eq. (18) is equivalent to using 
Eq. (14) instead of Eq. (13c) to calculate 7. 

For the simple cubic lattice, Eq. (16) gives 

T s c =i+( iV^-s +
3 (£) , (20a) 

where the 1 arises from the point 1=0 that is excluded 
from the sum in (16). For the body-centered cubic 
space lattice we omit points for which h+h+h is odd, 
and obtain 

yhcc=l+UB/wr2-KS+
d(B)+SJ(B)^. (20b) 

For the face-centered cubic space lattice, we must 
include only U which are all even or all odd, and find: 

-KS+(B)-S-(B)J. (20c) 

III. RESULTS FOR MONATOMIC LATTICES 

The numerical values of 7 for the simple cubic, body-
centered cubic, and face-centered cubic lattices given 
in (20) have been evaluated for a series of values of the 

width parameter B, and are listed in Table I. We see 
that they vary smoothly between the expected limits, 
7 = 0 for the extreme diffuse limit £ = 0 , and 7 = 1 for 
electronic point charges, B —> 00. 

I t is instructive to present the results not in terms 
of B but in terms of a parameter that measures the 
compactness of the electronic charge more directly. 
We use for this purpose the quantity 

/= = / pe(r)dt, 
•/cell 

(21) 

which is the fraction of the electronic charge contained 
in the atomic polyhedron12 centered at the center of the 
charge distribution. Values of / obtained by numerical 
integration are given for each value of B in Table I for 
the three structures. For the simple cubic case we can 
check the numerical integration, since (21) then gives 

/8C(^) = [ e r f (^ /2 ) ]3 (22) 

The listed values which were checked were correct to 
the four decimal places given, and we expect the error 
in the remaining values, and for the other structures, to 
be no more than one or two units in the last place given. 
The numerical integration converges most slowly for 

12 See p. 286 of Ref.[7. 
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the fee lattice, probably because of the rather sharp 
corners in the primitive cell. The evaluation of 7 is 
numerically much simpler, and the values are given to 
six decimals. 

The effective field coefficients 7 for the simple cubic 
and face-centered cubic lattices are shown as functions 
of / in Fig. 1. The curve for the body-centered cubic 
lattice falls very close to the fee curve, and has therefore 
been omitted. 

For diffuse electronic charge distributions we find 
that y^f for very small values of / . When the overlap 
between neighboring electron distributions, as measured 
by 1 — / , goes to zero, we find that for the Gaussian 
case 1—7^(1—f)p, where p goes asymptotically to 4 
as the overlap goes to zero. This dependence is specific 
to the Gaussian distribution. If, as is perhaps more 
reasonable for real solids, we have charge densities which 
decay exponentially at large distances, then p ap
proaches 2 in the limit of small overlap. 

The most striking qualitative feature of the results 
in Fig. 1 is that even for an overlap of 20%, i.e., 
/ = 0.8, 7 differs from 1 by less than 3 % . This conclusion 
will be weakened somewhat if charge distributions with 
an exponential tail are considered instead of the 
Gaussian distribution we chose for its simplicity, but 
it suggests that for the monatomic cubic lattices the 
Lorentz field is quite accurate until there is very sub
stantial electronic overlap. 

IV. DIATOMIC LATTICES 

Most calculations involving effective fields in real 
solids are carried out for diatomic structures, which 
include many of the ionic crystals and semiconductors 
for which relevant experiments have been carried out. 
We therefore extend our results to the rocksalt, zinc-
blende, and cesium chloride structures, each of which 
has two atoms (or ions) in the primitive cell. 

We assume that the negative ions in the undisturbed 
lattice are at the lattice points, and that the positive 
ions are displaced by a basis vector b. The rectangular 
components of b are Ja, 0, 0; Ja, ja, \a; and ^a, fa, \a; 
for the rocksalt, zincblende, and cesium chloride struc
tures, respectively, where a is the lattice constant. The 
first two of these lattices have a face-centered cubic 
Bravais lattice, while the last has a simple cubic Bravais 
lattice. 

The charges of the loosely bound electrons associated 
with the positive and negative ions, are q+e and g_e, 
respectively, and the displacements of the electrons 
from their equilibrium positions are u+e and u_e, re
spectively. Similarly we assume that the rigid cores 
of the positive and negative ions have charges and 
displacements q+c, u+ c and g_c, u_c, respectively. The 
total polarization of the lattice is 

P = N(q+cu+c+q+eU+e+q-cU-.c+q-eU-e), (23) 

and charge neutrality requires that 

q+c+q+e+q-c+q-.e=Q. (24) 

0 O.I 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FRACTION OF ELECTRONIC CHARGE IN ATOMIC POLYHEDRON 

FIG. 1. The effective field constant y, as given in Eq. (20) for 
the simple cubic and face-centered cubic lattices, is plotted versus 
/ , the fraction of the electronic charge of one atom which lies 
within the atomic polyhedron centered at the atom. The curve for 
the body-centered cubic lattice would practically coincide with 
the fee curve. 

The calculation of the effective field acting on the 
cores and the electrons of the two ions proceeds exactly 
as in Sec. II , and will not be described. For each of the 
two ions, we subtract the field of the ion itself from the 
total field in the lattice to get the effective field acting 
on the core and electrons of that ion. We find the ef
fective fields to be 

E + c = E + (47riV/3)[7+g+e(u+e~u+c) 

+ g _ c ( u _ c - u + c ) + 7 , _ g _ e ( u _ e - i i + c ) ] , (25a) 

E + e = E + (4*N/3)Zy+q+e(u+e-u+,) 
+ 7 + V c ( u _ c - u + e ) + 7 / g - e ( u _ e - u + e ) ] , (25b) 

E_c= E + (brNMtq+eiu+e-U-o) 

+y+
fq+e(u+e-u-c)+y-q-e(u-e-u-c)2, (25c) 

E_e= E + (4xiV/3)C7 , -^ c (u+ c -u_ e ) 

+ 7 r V e ( u + e - u _ e ) + 7 - g - c ( u _ c - u _ e ) ] , (25d) 

where, for example, E_e is the effective field acting on 
the electrons of the negative ion. Here y is the effective 
field constant for the Bravais lattice (fee for rocksalt 
and zincblende, sc for cesium chloride) as given in Eq. 
(20), and the subscript + or — indicates that we must 
use for the parameter B=wa2 the value B+ or B_ ap
propriate for the electron distributions on the positive 
or negative ions, respectively. The new coefficient yf 

is defined by 

7 , = 1 - E i ^ ( k i ) e x p ( * r b ) , (26) 

where the sum is over all reciprocal lattice vectors, and 
b is the basis vector for the particular lattice. For the 
Gaussian13 charge distribution of Eq. (15), this gives 

7 ' = 1 - E i exp[(-7r2Z2 /£)+ (2n-/a)Mf], (27) 

where 1 has the same significance as in Sec. I I . The 

13 A Gaussian model was used to calculate crystal potentials by 
J. L. Birman, Phys. Rev. 97, 897 (1955). 
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subscripts + and — on y! have the same significance as 
for 7, and the subscript r means that we must use for 
B the value Br=B+B_/(B++BJ). 

The effective field expressions in (26) have the ex
pected values in some simple limiting cases. For ex
ample, if B+ and B^ (and therefore, also Br) become 
infinite, corresponding to compact electron distribu
tions, both 7 and y' go to 1, and we can verify that all 
four effective fields reduce to the Lorentz field by using 
Eqs. (23) and (24). If one of the electron distributions 
becomes very broad, corresponding to B^Q, the as
sociated values of y and y', including 7 / , go to zero, and 
the effective field acting on that electron becomes just 
the average electric field E. The effective field acting 
on the cores does not, and should not, go to E in this case. 
One further check on the expressions in (25) is that the 
total force on the four charges in the primitive cell van
ishes identically. 

When we substitute in Eq. (26) the values of b 
appropriate for the rocksalt, zincblende, and cesium 
chloride lattices, we find that in each case y' can be 
written 

7 , - l - E a e x p ( - 7 r 2 / 2 / ^ ) + i : & e x p ( - 7 r 2 / V ^ ) . (28) 

For the rocksalt structure the first summation is over 
values of the U all of which are even, and the second 
summation is over values which are all odd. Thus, in 
the notation of the previous section 

y'(B)=l-iZS+(B)+S„(B)J 
+ f D$+(£) -S- (£) ] 3 (rocksalt). (29a) 

For the zincblende lattice, the first sum in (26) is over 
values of the k which are all even and whose sum is 
divisible by 4, and the second sum is over the remaining 
even values. For this case we find 

y'(B)= l - [ S _ ( £ / 4 ) ] 3 (zincblende). (29b) 

Finally for the cesium chloride lattice the first sum in 
(26) is over l{ whose sum is even, and the second sum is 
over U whose sum is odd, and we have 

y'(B)=l-ZS-(B)J (cesium chloride). (29c) 

Values of 7 ' for the three diatomic cubic lattices are 
given for various values of B in Table I. If we character
ize the electron distribution by the quantity / for the 
Bravais lattice ( / describes the overlap of the electrons 
with others of the same sublattice), we can plot y' 
against / . These curves are shown in Fig. 2. 

The rapid decrease in yf when / decreases from 1 
arises because y' depends on nearest-neighbor overlap, 
while / measures the overlap between next-nearest 
neighbors. We see from Fig. 2 that even a small overlap 
between next-nearest-neighbor charge distributions 
implies a marked departure of y' from 1, and therefore 
a marked departure of the effective field from the 
Lorentz field. 
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FIG. 2. The effective field constant y' for the rocksalt, zincblende, 
and cesium chloride structures, given in Eq. (29), is plotted versus 
the charge fraction / i n the atomic polyhedron for the correspond
ing Bravais lattice. 

The asymptotic dependence of 7 on / is given by 
1—yr~ (1 —f)p, where for Gaussian charge distributions 
p approaches 2, f, and 3, respectively, for the rocksalt, 
zincblende, and cesium chloride lattices as /—>1. If 
the charge distribution has an exponential tail, these 
values of p must be replaced by their square roots. 

The polarization of the tightly bound electrons, which 
has been neglected in our treatment so far, can be taken 
into account by a straightforward extension of Eq. (25). 
We will have an additional effective field expression for 
each group of tightly bound electrons, and their dis
placements will enter in the effective fields acting on 
the remaining charges in the lattice. I t is not possible to 
simplify all the resulting expressions in such a way that 
only the net polarization of the tightly bound electrons 
appears. 

V. DISCUSSION 

The results of the previous section show that the 
effective fields can deviate substantially from the 
Lorentz field when there is overlap of the electron dis
tributions. This was pointed out by Mott and Gurney,1 

and has recently been considered by Brodsky and Bur-
stein14 in relation to the effective charge in III-V 
semiconductors. Our results may be helpful in making 
possible crude quantitative estimates of the effective 
field for actual crystals. 

In applying our results to the oscillator strengths of 
defects in ionic crystals, one must take into account the 
corrections which results because the defect has dif
ferent properties from those of the defect site in a per
fect crystal. These corrections have been discussed by 
Herring.15 

For application to the theory of lattice vibrations we 

14 M. H. Brodsky and E. Burstein, Bull. Am. Phys. Soc. 7, 214 
(1962). 

15 C. Herring, in Photoconductivity Conference, edited by R. G. 
Breckenridge, B. R. Russell, and E. E. Hahn (John Wiley & 
Sons, Inc., New York, 1956), p. 81. 
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note that the effective fields in (25) depend only on 
differences of displacements, and therefore lead to force 
terms of the same form as the short-range "elastic" 
interactions. Thus the equations of motion of the lattice16 

will be unchanged, and the only effect of the corrections 
we have found to the Lorentz effective field will be to 
change the interpretation of some of the coefficients in 
the equations of motion for the long-wavelength optical 
modes. 

Effective fields for waves of arbitrary wavelength 
have recently been considered by Cochran.17 His results 

16 See, for example, Eq. (3.2) of W. Cochran, in Advances in 
Physics, edited by B. H. Flowers (Taylor and Francis, Ltd. 
London, 1960), Vol. 9, p. 387. 

17 W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963); 

I. INTRODUCTION 

CONSIDERABLE interest has been shown in recent 
years in comparisons of experimental results with 

predictions of the Heisenberg model of magnetism; e.g., 
measurements of the magnetization of a variety of 
magnetically ordered crystals have been made and the 
results interpreted by spin-wave theories of varying 
degrees of sophistication.1 In particular, two nuclear-
magnetic-resonance (NMR) magnetization measure
ments and their interpretations have a bearing on the 
present investigation: (1) The work of Gossard, Jacca-
rino, and Remeika2 (hereafter referred to as GJR) on 

f This work performed under the auspices of the U. S. Atomic 
Energy Commission. 

* Now at Bellcomm, Incorporated, Washington, D. C. 
1 Exhaustive references may be found in the review article of 

P. W. Anderson, Solid State Phys. 14, 99 (1963). 
2 A. C. Gossard, V. Jaccarino, and J. P. Remeika, Phys. Rev. 

Letters 7, 122 (1961). 

are for rigid ions but, if modified to allow for separate 
displacements of the core and one or more electron 
shells, they are equivalent in the long-wavelength limit 
to the results given here. 
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ferromagnetic CrBr3, and (2) the work of Narath3 on 
antiferromagnetic CrCl3. At low temperatures, the 
structures of these crystals are isomorphic,4 and can be 
represented by Fig. 1 (a). In both cases, the strongest 
exchange coupling is the ferromagnetic coupling JT, of 
nearest neighbors in the hexagonal basal plane. The 
interlayer exchange coupling JL is ferromagnetic in 
CrBr3 and antiferromagnetic in CrCl3. 

We have noticed an inconsistency between JT re
ported for CrBr3 and the one reported for CrCi3; that 
is, for CrCl3 the value J r / ^ = 4.5°K obtained via spin-
wave theory is considerably larger than the one deduced 
from the ordering temperature Tc by means of the 
molecular field approximation 

/ r / A = 3 r c / [ 2 2 S ( S + l ) ] , (1.1) 

3 A. Narath, Phys. Rev. Letters 7, 410 (1961); Phys. Rev. 131, 
1929 (1963). 

4 B. Morosin and A. Narath, J. Chem. Phys. 40, 1958 (1964). 
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Spin-Wave Renormalization Applied to Ferromagnetic CrBr3f 

H. L. DAVIS* AND ALBERT NARATH 

Sandia Laboratory, Albuquerque, New Mexico 
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Nuclear-magnetic-resonance-domain magnetization data for ferromagnetic CrBr3 have been extended 
over the range 1-20°K. Using the low-temperature (<5.25°K) data and Holstein-Primakoff spin-wave 
theory without the usual long-wavelength approximation, we have shown that exchange constants reported 
by Gossard, Jaccarino, and Remeika are in error by about 40%. This error resulted from the long-wavelength 
approximation, which causes, even at temperatures fth the Curie temperature, errors much larger than ex
perimental errors. In the low-temperature range, we have found a 20% range for the values of the exchange 
constants which will explain the experimental results. However, by using spin-wave renormalization tech
niques to interpret the intermediate temperature data, the acceptable range in values for the exchange 
constants is narrowed to less than 2%. We have been able to fit the experimental NMR frequencies, through
out the temperature range of 1-20°K, with the renormalized spin-wave theory. The resulting rms error of 
16.2 kc/sec lies within the mean experimental error, thereby giving experimental verification to the approxi
mations used in developing the spin-wave renormalization. This data fit gives 8.25°K for the intralayer 
exchange constant, 0.497°K for the interlayer exchange constant, and 58.099 Mc/sec for the 0°K, zero-field 
Cr53 resonance frequency. 


